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Abstract-Specialized functional are introduced for traveling and
circulating electromagnetic waves in planar and axisymmetric two-
dimensional geometries, without recourse to complex arithmetic. The
singularities in the functional for axisymmetric geometries are eliminated
by a transformation of the field components. The transformed fields are

approximated by high-order interpolation polynomials over triangular
regions in the x-y and r-z coordinate planes. A matrix expression

assembled from constant element matrices and geometric factors relating
to triangle shape, size, and position is obtained which is the discretized

equivalent of the original functional. The necessary element matrices

have been computed to sixth-order polynomial approximation. The
procedure for assembling a global problem is stated. Finally, a matrix

equation is generated by minimizing the discretized functional.

I. INTRODUCTION

I N A recent paper [1], the author presented a general

three-component vector variational formulation of

electromagnetic field problems and derived functional for

the wave equation in Cartesian and cylindrical coordinates.

In this paper, specialized functional are introduced for

two commonly encountered wave types in loss-free aniso-

tropic media. Finite element matrices are derived and com-

puted for polynomial approximations of orders 1-6. The

formulation permits the analysis of traveling waves in

waveguides of arbitrary cross section and of circulating

waves in resonators of arbitrary longitudinal cross section,

including the study of waves in anisotropic media.

The only three-component vector variational fclrmulation

of electromagnetic waves in isotropic media, in recent years,

is due to English and Young [2]. Their method is, however,

restricted to rectangular or circular geometries. With

regard to future work with anisotropic media, English and

Young predict that the coefficient matrix will be complex.

That this is not necessarily so, is evident from the present

work.

It is interesting to note that the formulation given here is

more closely related to the work of Stone [3], who, presented

a finite element formulation for the solution of acoustic

wave propagation, than to any of the published methods

for electromagnetic wave propagation. Stone’s fcmmulation

is based on Silvester’s high-order finite element method for

potential calculations and homogeneous waveguide prob-

lems [4], [5], as is the method in this paper, although Stone
considers acoustic wave propagation. In connecticm with the
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dielectric-loaded waveguide problem, Stone comments that

“the variational principle must be modified to accommo-

date the required interface conditions,” apparently not

realizing that an analogous three-component formulation

of electromagnetic wave problems is also possible. Re-

markably, the five representative finite element matrices

used by Stone [3], [6] are precisely the same as the ones

computed here for traveling waves. Two of these five

matrices are given in Silvester’s work [4], a third one has

been computed independently by Csendes [7], [8] and by

Daly [9], [10], and the remaining two have been computed

by Stone [3], [6]. However, in each of these cases, the

matrices are given only up to fourth order, not six as in the

present work. Moreover, in this paper, entirely new finite

element matrices are derived for circulating wave problems.

It should be noted that as far as electromagnetic field

problems are concerned, the finite element method has been

applied previously only to the longitudinal electric and

magnetic field vector components [7]–[9] and only to

problems involving isotropic media. The finite element

formulation presented in this paper, therefore, both com-

plements and provides an alternative to existing methods.

II. MATHEMATICAL REPRESENTATION OF TRAVELING

AND CIRCULATING ELECTROMAGNETIC WAVES

At and above cutoff, a guided wave in the rectangular

coordinate system is characterized by the relative phases of

its field vector components and by a propagation constant

B. The unknowns are the functions H., H,, and HZ which

describe the magnetic field components in the x-y plane

and the frequency co at which the wave occurs. Similarly,

in the axisymmetric case, the relative phases and the

circulation constant m of the guided wave are known but

the frequency w and the functions describing the magnetic

field components in the r-z plane are unknown. The con-

stant m is related to the azimuthal periodicity of the wave

and therefore must be an integer (including zero).

In this paper, traveling waves of the form

[ ( )1El=ix~xkyl+iyqxd+izm~dew*j~
2

“ exp (@t – j/?z) (1)

are considered in media characterized

permittivity tensors of the form

[

9..

1

qYx +jqzJ

~= 9,. 9YY +jqzy ,

–j9zx –jf3zY 9.,

by permeability and

~-~or~. (2)
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These tensors are characteristic of transversely magnetized

ferromagnetic materials and of plasma [1 1], [12]. The

magnetization may be in any direction but it is restricted to

the x-y plane [13].1

In direct analogy to traveling waves in Cartesian co-

ordinates, circulating waves in the (r,O,z) system are

mathematically described by

[ ( )1R= ir~,(r,z) + i&?O(r,z) + TZHz(r,Z) exp +j~
2

“ exp (#et – jn6). (3)

The permeability and permittivity tensors are of the same

form as their Cartesian counterparts given by (2) but with

the subscripts x and y replaced by r and 0, respectively. At

the plane O = O the tensors are identical to the Cartesian

tensors [14].

III. SPECIALIZED FUNCTIONAL FOR TRAVELING AND

CIRCULATING WAVES

The waves described in the previous section must satisfy

the wave equation for source-free media

curl (~ curl ~) – co2@l = O (4)

where ~ = 8-1. It can be shown that the vector function

~ = R which is a solution of (4) extremizes the functional

~=1 JJJ

+ 2 ~e[pi+ ~,i(curl W+ I (curl ‘)i]

— @2[~i,ilHil 2 + 2. Ile(Pi+ l,i~t+ lHi)]} ‘u (5)

where the subscript i is cyclic modulo 3 and the asterisk

denotes complex conjugate, In addition, R satisfies the

natural boundary conditions [1], [15] given by

iix(}curlll)=O (6)

over the surface r which encloses the volume fl ii is the

outward unit normal vector to r. The explicit forms of the

functional and the natural boundary conditions in Cartesian

and cylindrical coordinates are given in [1] and [15]. The

specialized form of F(H) for traveling waves is given by

J[”+$i ‘HY)2F(n) = 2 ~

“#%Hx)2 +’=(%’-?)2

(

i?Hz
– 2pyx —

)(
t PHY ~ + l?Hx

)

* 2p=x
( +-%)(L)

‘ 2’J$E %)(%3 ‘ ‘H.)

– co2(pxxHx2 + PYYHY2+ PzzHz2 + 4J,.H.H,

1T2uzxHxHz 7 kyHyHz) dx dy. (7)

1 Other magnetization directions give rise to other material property
tensor forms and phase relationships between the field vector com-
ponents. It is beyond the scope of this paper to consider all possible
combinations.
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The constant 27r/~ arises from the integration with respect

to z between the beginning and the end of a period in the

direction of travel.

For circulating waves the functional is given by

F(n) = 2r(

+

+

+

+

—

T

The t and

u{( =’?)2“’’’[(%)2p,, J; ‘H’

(!!)21+’W%+$32
( )1ng2+2“, ~

(

aHo

J
&mHz – r—

az )

(

aH’ . n’q
2pzrmHr ~ +

r )

[(

aH
2’,9 T $

)

aH 1Ho+r~–mH, --#

co2r(v,,H,2 + ,uooHo2+ UZ=HZ2+ 2fi0,H,Ho

}
2pzrHrH. T ZW,OHOH.) dr dz

m = 0,-L l,-L2, i3, ”... (8)

T terms arise because the Hz vector component

may either lead or lag the other two components by a time

phase of 7c/2 radians. Notice that all quantities in (7) and

(8) are real. When m = O, only those fields for which

H, = .Hz = O are of practical importance, and this case

has been treated elsewhere [16]-[18].

In order to avoid difficulties in trying to integrate the

singular terms in the functional (8), the vector function

E(r,z) will be transformed according to [1], [15]-[18]

R = /;E(r,z). (9)

The transformation is justified because the field vector

components must vanish at r = O. The functional (8) now

takes the following form:

F(h) = 27t
U( (‘rr ‘%’+ “,)2+ ““[(r%)’

()

+r~z
+rhz~+~hz2

& 1
+p==

[( ‘2 ‘:”)2 +4m2’:1
(+mhz - r~)+ 2po,r $ _

(
+ 2p,,mh, r ~ T mhz

)

[(
+ 2’=’ T ~hz+r~

)

(

, :h +ra~, _}nrh~,

2°& ) ‘ az 1
. co2r2(p,,h,2 + poohe2+ pZzhz2+ 2po,hrho

)
T 2p=rh,h. ~ 2A$rJz,) dr dz

m = il, i2, i3,0 ””. (10)
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TABLE I
RSSULTSOF THE lXSCRETIZATIC,N OF REPRESENTATIVE INTEGRALS FOR FUNCTIONAL (10)

Representative Di.scretized Expressions for the square matrices

. ..-.-.*
.— —

Expressions for the (m, k)-th entry
integrals for equivalents containing the geometrical information of the constant finite element matrices
functional (3.7) in matrix about the triangttlar finite element [yij], [Uij13 [~i~l, [Q~jgl and ‘8iji]

form

ff ‘lhzdrdz ,=1 ,&Y,jl[v1]t[R][v21 [R]=21 AI ~
‘m’k)=%k’~”m”kd’‘M

A

f(’’hlh,d’d’
[v1]t[P][v2] [P]=21 AI j ri

jl’j[yijl
i=l

f(”l 2 “d’
[V11t[Jl[V2] [Jl=# i~lq j~l(~j+, -rj+l){ [uijl+[~ijl}

“(m, k)
ij “ddfc,(”k ~ ‘a. ~)ds

[Nl=w jl’i j~l(’j+l-”j+zfh 2 “d’
[V1]t[N][V2] ){[uijl+[[ijl) (“’k)=hfj , ‘amJhj -%ds

c ‘ak 3q -% acj

H“222 “d’ ‘v,]t[D][v2] “I”*,!,’, ~ _j=lrj &rl-rt+2)(r L-rL+l) [Q~jLl Q;;;k)=~ H +,--)(-l--)’;c=cj ‘ac
A

(F22 -2 ‘“Z ‘Vi]’[E][V2] ‘E]=fiiilri jilrj ~il(z~-z~+,)(z~-z~+l)[ qij~]

f(”% 2 “d” ‘Vi] ’[z][v,] “I=*,!,’, j!,’, ,!,’’l’Q,jt’+’t’Qijt” %i;ik)”idkd-% - ?k)d’A
This last integral does not
appear in (3.7) : However, it

dg=(rl+l-rl) (Z L- Z1+2 )+(. L-.1+ 2)(. L+l-. L)

would appear in . fnn. tional
for c~rcul~ting ~aves of the ti=(zl+l-z L+2)(r1-ri+2 )-(. i+2-. i)(. t+2-ri+1)
type lrHr+lej H6+lzHz (j=~)

NOTE: a) superscript t demotes transposition;
b) .ub.. riet. i, j and L are cyclic modulo 3;
c) the range .f m and k depends on the degree of the interpolation polynomials a;
d) [Yij] , [uij] , [Qiji] are symmetric and [.&l , [Qijil are ant f.ynutetric matrices;

e) ri and Zi are triangle vertex coordinates and A is the triangle area.

IV. DISCRETIZATION

The objective is to discretize the functional (7) and (10)

so that they can be written in matrix form. In the process,

the vector field is approximated by interpolation poly-

nomials over a general triangular region in such a way that

the integrations are performed only once and geometrical

information is added only when a specific problem is

solved [4]–[9], [15] -[19]. Thus, for a general triamgle, the

vector function fi(r,z) [or R (x,y)] is approximated by a

linear combination of a complete set of interpolation

polynomials {~i; i = 1,2,3,. “” ,n} each of degree N [4]

k = ~ @i(Ll,C2,C3),n = (N + I)(N + 2)/2. (11)
j=l

The coefficients vi represent the values of h (or @ at the

interpolation nodes. The polynomials ai given in [4] have

been used extensively in reeent years to generate hiigh-,order

triangular finite elements [5]–[8], [15]–[18]. cl, (2, and ~3

are triangle area coordinates [4], [15], [19].

When the expanded integrands of (7) and (10) are

examined, one finds that many of the terms are similar in

form and that the various terms can be classified into
representative groups as shown in the first columns of

Tables I and II. The subscripts 1 and 2 in the expressions

signify that there may be two distinct field vector, com-

ponents involved. Although the discretization of the

representative integrals involves the straightforward sub-

stitution of algebraic expressions, the procedure is lengthy

and tedious. The discretized equivalents of the functional

can be constructed from the results given in Tables I and II.

The discretized equivalent of (7) is given by

F(v) = 2(7c/p){[vx]’(Pzz[lq + P2P,,[N)[KJ

– 2[VY]’(17PZX[J] + Pzpy.[q + Pzz[qt

+ &[N]’)[vx] + [ql’(Pzz[E] + 2hx[~1

+ p2pxx[lq)[I’J T WJwyx[.v + Pz.[m

- PP,,[w - PZ,[WIKI T wzlw,x[w

+ P,YIEI – /kx[Jlt – Pzx[Zl)[~yl

+ [K] ’(Pxx[~l + PYYIEI – 2Pyx[Z1)[~z1 ,

– coypxx[l’y[lq[vg + %yx[~ylt[w(x]

+ Ldv[mvyl T %x[~zl’[m”x]

T mzy[~z]’[q[~y] + /Jzz[~z]TKl[~z])} (12)

and the discretized equivalent of (10) has the form

F(v) = 2n{[K]t(p,,[D] + m’pzz[~] – 27WZO[JI)[J7,1

+ 2[vJ(*nZp,r[.7] + rn’pzr[lq)[lq

+ [VJt(PeO[E] + AJIYI + be[~l

+ nZ2prr[lq)[vz] + 2[V;]T%[JI’ – POr[mm

7 [W(bze[lq + 3Pzo[m + Ae[w’ + Wze[a

+ %L,[J]’)[J”Z] + [JmPrr[a + Pzz[~l

+ 3pzz[Aq + :Pzz[q)[ve] – ~’(lmmmw

T zvzr[~z]’[ma + flzz[yzlt[w’zl

+ 2p&[vo]t[lq[vJ T k[~el’[m%l

+ J.%WJ[H[VJ)}. (13)

Equations (12) and (13) can be constructed for a triangle of

arbitrary shape provided that the vertex coordinates are

known and the constant matrices [Yij]$ [V~j], [Utj], [Qijl],

and [Qijl] defined in the last column of Table I are given.
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TABLE II
RasuLTs OF THS DISCRSTIZATtON OF REPRSSENTATfVSINTEGRALS FORFUnCtiOnal (7)

Representative Discretized Expressions for the square matrices Expressions for the

integrals for equivalents containing the geometrical information

functional (3.4)

constant finite

in matrix about the triangular finite element element matrices

form

ff Hl”zdxdy
[V1]t[R][V2]

~=1 j!l[yijl
[R]=2\A/ ~ [Yij 1

for definition
see Table I.

If

3H2

‘1 F “dy
[V1]t[Jl[IJ2] [Jl=#- ; (Xj=l j+z-xj+l ){[ujl+[,tJjl} [Ujl= j [Uijl

i=l

If

aH2

[N]=j# ; (Yj+l

3
H — dxdy

I ax
[Vl]t[N][V2] -Yj+2){[ujl+[}jl} Wj l=i~lwijIj=l

If–

aHl aH 3

J dxdy
ay ay [vllt[Dl [V21 1 (XL-XL+2) (XL-Xi+l) [Qkl[Dl=fi ~=1 [QRl=i~l j~l[QijLl

If

aH a“
-_! d dxdy
ax ax

[v11t[E][v2]
[El=% J1

(Y L-YL+2) (Y L-Yi+l) [Rfll W=ijl ~~lwij~]

H

8H1 8H2
— ~ dxdy
ay

[v11t[zl[v21 ! {.5 L[Q~l+Tl[Q~l}[Z]=* ~=1

61=(X1+1 -xi) (Yt-Y1+2)+ (xk-x L+2) (Y~+~-Y~)

TL=(y L+l-YE+2) (X I- X~+2)-(YL+2-YL) (X~+2-XL+l)

NOTE: a) superscript t denotes transposition;

b) subscripts 1, j and t are cyclic modulo 3;

C) [yijl, [Ujl and [Qll are sym~etric, [Xjl and [~k] are ant asymmetric Mat KiCe S;

d) [Yijl, [uijl , [}~jl , [Q~jll and [~ijll are defined in Table 1;

e) xi s“d yi are triangle vertex coordinates and A is the triangle area.

There are 81 such matrices. However, only 14 are indepen-

dent, the remaining 67 being obtainable by row and column

. permutations [15].

V. THE ELEMENT MATRICES

The integrands in the last column of Table I are poly-

nomials in triangle area coordinates. Although straight-

forward, the integrations [4], [20] are difficult to perform,

except in the case N = 1 or 2, due to the very large number

of algebraic operations required. The author used the
IBM PL/I FORMAC compiler to manipulate the poly-

nomial expressions and to perform the integrations sym-

bolically rather than numerically [15]. Thus it was possible

to obtain the eight symmetric (Qlll, Qlzl, Qzzl, Q231,

u 112 U21, Y1~, Y2J [16] and the six antisymmetric (Ql ~~,

QI ~z, Qlz *, Q23 ~, U1~, Uzl) independent finite element

matrices up to and including order 6. The first- and second-

order matrices are given in Table III. The higher order

matrices (N = 3–6) are not reproduced here since they require

considerable space. In practice, the numbers are handled

by two computer programs which store all 14 independent

matrices as integer quotients with common denominators

and generate FORTRAN block data statements contain-

ing the matrices. One of these programs also performs the

summations indicated in the last column of Table II. Thus

the element matrices required by (12) are also produced.2

2 For program listing, seeNAPS Document Nos. 03004 and 03005
from ASIS/NAPS, c/o Microfiche Publication!, P.O. Box 3513, Grand
Central Station, New York, NY 10017; remhtmg $3.00 per microfiche
or $20.25per photocopy of Document 03004and $21.25per photocopy
of Document 03005,

It should be noted here that the element matrices

[R]/21Al and [Ql] have originally been given for orders

1-4 by Silvester [4], the antisymmetric matrix [Ql] has

been given independently by Csendes [7], [8] and by

Daly [9], [10], and the matrices [Ul] and [Ul] have been

computed by Stone [3], [6].

The permutation operations which must be applied to

obtain the entire set of 81 element matrices appear in

Table IV. There are two basic kinds of permutation opera-

tions for element matrices [4], [21]. The first type, denoted

by R, corresponds to a mapping of the interpolation node

numbers by a rotation of the triangle counterclockwise until

the last node occupies the relative location of the first one

(Fig. 1). The node numbering sequence of the triangle in

the standard position corresponds to the row and column

sequence of the independent element matrices of Table III.

For a second-order triangle in the rotated position, the

sequence becomes 6,3,5,1,2,4. The second type of permu-

tation operation, denoted by F, corresponds to the mapping

of the interpolation node numbers by flipping the triangle

about an axis in its plane (Fig. 1). FORTRAN function

subroutines implementing the permutation operations R
and F and their combinations (Rz, RF, and R2F) have

appeared elsehere [21].

W. MINIMIZATION OF THE DISCRETIZED FUNCTIONAL

Given the independent element matrices, the matrix
forms (12) and (13) can be constructed for any polygonal

region that has been subdivided into triangles. In order to

assemble a global matrix form, it is required that contribu-
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TABLE III
THE FIRST- AND SECOND-ORDERINDEPENDENTELEMSNT MATRICES

bbbb~bbbbbbbbh
cd=12 cd=24 cd=12 cd=24 cd=12 cd=12 cd=24 cd=24 cd=360 cd=360 cd=24 cd=24 cd=24 cd=24

First-order matrices

DDPJD DD
cd=180 cd=180 cd=360 cd=360 cd=360

mmE3
cd=180 cd=180 cd=360

Y
11

El
24

12 48

12 24 48

-3-6-62

0 12 12-2 8

-3 -6 -6 1-2 2

cd S common denominator cd=2520

mmm
cd=360 cd=360 cd=360

Y
21

El

3

0 36

0 12 12

-1 0-23

-2 12 801.3

0 -4-20-21

cd=2520

Second-order matrices

tions from each triangle be properly identified and con-

nected together. Since the magnetic field H must be

continuous from triangle to triangle, the wave function

values at adjacent nodes are set equal. Theoretically, the

assembly process is performed with connection matrices [5],

[22]. However, in practice it is sufficient to employ a global

numbering sequence for the interpolation nodes. If the local

functional all constructed using the global node identifiers,

the locations of elemental contributions in the glolbal matrix

are easily determined. The form of the discretized functional

is unchanged in the global interpretation. For example, the

column matrix [v,] of (13) in global form contains the

coefficients from all the triangles in the sequence in which

H[v,]

[v] = [v=]

l[V,]J

[

!JJf’1 T ld~l Pelpl
[n = +Vzr[f’1 flzz[~l + Pze[~l

Alp] + Pze[m ALP] 1

[s] =

the nodes are numbered. Similarly, in global form, the

matrices [D], [R], [J], [E], [N], and [P] are the sum of

contributions from the various triangles.

In the global interpretation, (12) and (13) are minimized

by differentiating with respect to [w], [Vz], [Vo], and [Vx],

[Vy], [Vz], respectively, and equating the results to zero.

For each functional, three matrix equations with three

unknown column matrices result; these can be combined

into a single matrix equation

[S][v] - CO’[T][V] = o. (14)

For circulating waves the column matrix [V] and the sym-

metric coefficient matrices [T] and [S] are given by

dpzz[q + poe[qnzzpzr[lq* ?npor[J]t nzpzr[.l]– p&[D]
– wze([Jl + [v)

?)’#pzr[l?]+ I’)’zpdr[.l] poo{+[lq+ +(-N] + [N]’) TPze{t[N + ;[NI’ + *[N]
+ [E]} + mzprr[lq + [E]} T nZprr[.J]

Wzr[.v - Per[w TPzJ:[m + :[fv + *[W Pzz{H~l + +([m + [m

+ [E]} T WIAIJI’ + [E]} + PAD] .

(15)

(16)

(17)
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TABLE IV
hRMUTATION OPERATIONS TO OBTAIN ALL 81 SYWTRIC AND ANTISYMMBTRIC ELEMENT MATRICES FROM THE 14

INDEPENDENT MATRICES

Matrices

‘ij.L%ij!L

2=1 !t=2 X=3

Y ij”ijlij
j=l j=z j=s j=l j=2 j=s j=l j=z j=3

Q Q Q
111 121

Q Q Q Q Q Q
j.=1 131 112 122 132 113 123

given

133

&k!?.Sw =FQ =RFQ =RFQ =RQ =R2 Q
121 221

=Rz Q
121

=R2 Q
231 221 231 121

Q
211

Q Q Q Q Q Q Q Q
i=2 221 231 212 222 232 213 223

‘Q
233

~21 given Qx.!?.2 =RFQ ~z ~ =RQ1ll =RQ =R2 Q =R2FQ221 =R2FQ
121 231 121

Q Q Q
311

Q Q Q Q Q Q
i=3 321 331 312 322 332 313 323

=FQ121 ‘Q =FQ =RQ =RQ
231 221

=RQ221
231

.R2 Q .R2FQ :;; Q

121 121 121 111

% 111 % 121 % % % 4 %
i=l

131 112 122 132 113

&M!sQ @.!Ew =-RF% QxsE =-R2F%231 =R% =-F%
231 231

‘:;$Q231 ‘:;4%12,
111

% 211 % 221 % % % %
i=2 231 212 222 232 % 213 % 223 Q

‘% =-R2F%231
233

= -RF%
121 111

kwSl =Rg =Rg .R24
111

=Rg =-q
121 231 112 231

Q311 Q 321 % % % % % % %
i=s 331 312 322 332 313

= -RF%
323

‘%
=R2~I 12 =R~ =R% =-RzF%

333

231 231
=R2#

231 121
=-F% =R2~I ~ ~

111 121 231

Y Y Y u u u
k! k! x

i=l 12 13

&

11
. Y =Y & %Fu

21
:;2 u

31 21
given %F} :;2g

21 21 21

Y Y Y u u u
c 1? #

i=z 22 23 22 21

& =RY =Y & =Ru .;~Fu
11 32 11

given 2 :Rg .:~F
21 11 %,

Y Y Y u u
31

u
32 t x z

i=3
31 32

=FY2 ~ =RY2 ~ :;2 ~ =Fu =Ru :;2 u
11 21 21

3~F~2, 3&Jj %ZJJ
11 21 11

Note: 1? denotes the rotation permutation operator, F denotes the flip permutation operator, and R2 = RR.

Fortraveling waves, [v], [T’], and[S] become

[1
[Vx]

[v] = [Vy]
[Vz]

[

Ax[R] P,.[KI TPzx[Kl

[Kl= ,u,.[K! ,LLYYIKI TAY[N

TP..JRI Ttuzy[Rl /uzz[K1 1

I

P’l%,[m + Pzz[~l -P2PY.[RI - DPzx[J1’ T BPJJI T Pzx[~l

+ PP.,([JI + [m – Pzz[zl – Ibz,[fw * hy,[m + Pz,[zl

[s] =
-ppyx[l?] - BP.*[JI hzx([fw + [m ~ %.[m + da’

– Pzz[q – DPzy[yl’ + Pzz[q + B’pxx[q * BP.*[JI T Pzy[Jq

T PPY.[JI’ T Pzx[q TflPy.[fw’ * Pzx[a –P,.([Z1 + [a)

* PPYY[W * Pz,[qt + PPXXIJI’ T Pzy[~l + lb[~l + lkx[~l

For an assembly of triangles with a total of n, interpolation

nodes, the size of the coefficient matrices [S] and [T] is

3nt x 3n,. The eigenvalues of (14) are ro2 and the eigen-

vectors are the nodal values of the vector fields. For every

value of the propagation constant /3, or of the circulation

constant m, an eigenvalue–eigenvector spectrum set can be

obtained, To obtain the magnetic field for circulating waves,

the solutions of (14) must be inversely transformed in

accordance with (9),

VII. ACCURACY OF THE METHOD

(18)

(19)

(20)

terized by the relative permeability tensor

[

3.0 0.0 +jO.8

P, = 0.0

1

1.0 +jo.o (21)

–jO.8 –jO.O 3.0

and a relative permittivity of 2. Here ~r is independent of

frequency, although this assumption is not valid for ferrites

in general [11], [12]. An analytical solution can be obtained

for the dominant waveguide mode and also for some of the

higher order modes [15]. A finite element solution was

obtained with two sixth-order triangles. The comparison of
Consider a rectangular waveguide with a 2:1 width-to- the finite element solution with the- analytical soiution ap-

height ratio completely filled with a ferrite material charac- pears in Tables V and VI.
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.Candard
position

,Z$;bed

position

Fig. 1. Mapping of the interpolation nodes of a second-order
triangle by (a) counterclockwise rotation, and (b) flip over about an
axis in its plane.

TABLE V
THE WAVENUMBERSk,, k,, AND k~ AND THE PERCENTERRORSFOR

THS FERRITS-FILLED RECTANGULAR WAVEGUIDFJSOLVEDBY THE
FINITS ELEMENT METHOD USING Two SIXTH-ORDER TRIANGLES

6
kl

% error* k2 ,Z error* k3 Z error*

-1

0

+1

+2

+3

+4

+3

0.788758 1. 74x10-4

0.665367 2.56x 10”4

0.788758 1.7 bx10-4

1.07723 2.42xl0
-6

1.43441 3 .89x10-4

1.82031 0 .06x10-4

2,21999 O,59X1O
-4

1.39655 1. 64x10-3

1.33076 1. 70x10–3

1.39655 1. 64x10-3

1.57754 1 .35x10-3

1.84005 1. 32x10-3

2.15448 1. 17.10-3

2,50133 1,15.10-3

2.06006 0.956

2.01606 0.999

2.06006 0.956

2.18662 0.838

2.38326 0.717

2.62235 0.164

2.92135 0.378
I I I

*
analytical solution: k:-&#32+(n~)2] , (n=l,2 ,3,...), kn=un~

TABLE VI
VALUSR OF Hz AT THE INTERPOLATION NODES AT y = O AND PERCENT ERRORSFOR THE FERRITE-FILLED RECTANGULAR

WAVEGUIDE SOLVEDBY THE FINITE ELEMENT METHOD USING Two SIXTH-ORDER TRIANGLES
——

Hz(x=-l) 33= (x=-:) Hz (x=-;) H= (x= O) Hz (X=+*) Hz (X=+;) Hz(x=+l)

6
% % % % % % %

err Or* err Or* error* error* err Or* err Or* err Or*

-4.3323 -4.1199 -2.802S -0.73543 +1.52S9 +3.3845 +4.3323
-1

.000 -.007 .010 .006 .020 -.010 .000

-5.1357 -4.4480 -2.5674 +0.00006 +2.5676 +11.4481 +5.1358
o

.002 -.oo6 .019 ---- .012 -.00s .000

-4.3323 -3.3845 -1.5289 +0.73546 +2.8028 +4.1199
+1

+4.3323

.000 -.010 .020 .002 .010 -.007 .000

-3.1721 -2.2089 -0.65313 +1.0771 +2.5187 +3.2859 +3.1721
+2

.000 -.013 ,029 -.007 .003 -.008 .000

-2.3821 -1.4568 -0.14028 +1.2133 +2.2418 +2.6700 +2.3821
+3

.000 -.030 .081 -.009 .001 -.017 .000

-1.8767 -0.98929 +0.16511 +1.2757 +2.0424 +2,2640 +1.8775
+4

.043 -.080 .162 -.060 .023 -.025 .000

-1,5391 -0.67965 +0.36195 +1.3064 +1.9012 +1.9862 +1.5389
+5

-.013 -.008 -.040 -.011 -,026 -.017 .000

*analytical solution: H =A[e, in(~x)+ (l.66/3T)C0s (1x)] where A has been chosen in such a way that the

Percent error in the “a~ue~ H (X=+I) ~omp”ted by the finite element method is zero.
z

VIII. CONCLUSIONS

The three-component vector variational formulation

coupled with the high-order polynomial triangular finite

element method presented in this paper has the following

significant features and advantages.

1) The formulation is based on specific wave forms such

as traveling waves which are linearly polarized in the trans-

verse plane and circulating waves which are circularly

polarized in the r-z plane. Depending on the choice of

material property tensor forms, other types of waves (e.g.,

circulating waves which are linearly polarized in the r-z
plane) could be treated in a similar way.

2) The formulation is valid for electromagnetic waves

both in isotropic and anisotropic lossless media with the

resulting coefficient matrices being real in both cases.

3) For inhomogeneous media, no singularities will

appear at the air line and dielectric line on the dispersion

diagram.
4) The finite elements are assembled from precalculated

constant matrices. Thus the matrix assembly does not

involve integration and consequently the assembly process

is fast and relatively easy to carry out.

5) Waveguides of arbitrary cross section or cavities of

arbitrary longitudinal cross section can be handled, and

provided that the finite element model has sufficient degrees

of freedom, the results are very accurate.

The following are the limitations and drawbacks of the

method.

1) The material property tensors are assumed to be

independent of the frequency and they must not have spatial

variation within the triangles.

2) It is difficult to model curved boundaries with triangles

which have straight edges.

3) Since three vector components must be considered for

every interpolation node, the size of the global matrix

equation is larger than in two-component vector formula-

tions. Explicit enforcement of boundary conditions such as

ii” E = O or ii “D = O is advantageous for reducing the

matrix size and for eliminating nonphysical solutions from

the spectrum as described in [1].
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Although the derivations in this paper are given in terms

of the magnetic field, the results are also valid for the electric

field provided that dual quantities are substituted and the

appropriate boundary conditions are added.
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High-Azimuthal-Index Resonances in Ferrite
MIC Disk Resonators

PIETRO DE SANTIS, MEMBER, lEEE

Abstract—This paper presents a study of the nonreciprocal high-

azimuthal-index zero-radial-order modes which may resonate in ferrite
MIC disk resonators magnetized perpendicularly to the ground plane.
Both ferrite volume (FW and edge-guided-wave (EGW) modes we
investigated by using a suitable equivalent model. It is found that when

the ferrite is saturated, a simple empiricat parameter is sufficient to
characterize the fringing-frelrt effects at the disk’s edge.

I. INTRODUCTION

R ECENTLY [1], [2], ferrite MIC disk resonators of

large diameter have received scrme attention because

they are suitable to study the propagation characteristics of

the “edge-guided” waves (EGW) [3] in very much the

same way as MIC ring resonators were’ used to study quasi-

TEM propagation in isotropic MIC’S.

Manuscript received May 28, 1976; revised November 5, 1976.
The author is with the Naval Research Laboratory, Washington,

DC 20375, on leave from Selenia S.p.A., Rome, Italy, and the Uni-
versity of Naples, Naples, Italy.

Among the various modes which may resonate in such

disk resonators, those appropriate to studying EGW

characteristics are the TMO ,n,O modes with n = 4,5,6, . . . .

These modes are TM with respect to the Z-axis, which is

taken perpendicular to the ground plane. They present no
nodes in the radial direction and are Z-independent.

An approximate analysis of a ferrite disk resonator mag-

netized perpendicularly to the ground plane was developed

by the present author [4] using perfect magnetic-wall

boundary conditions at the disk’s edge. Subsequent experi-

ments carried out by Brundle [2] measured EGW phase

velocities 8 percent off the theoretical predictions. ‘

The disagreement between theory and experiment was

probably due to the use of inaccurate boundary conditions;

i.e., to the neglect of fringing-field effects.

It is the purpose of this paper to study the flinging-field

effects in ferrite MIC disk resonators and, more specifically,

to evaluate how they affect the TMO ,.,O resonances. The


