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High-Order Triangular Finite Elements for
Electromagnetic Waves in Anisotropic
Media

A. KONRAD, MEMBER, IEEE

Abstract—Specialized functionals are introduced for traveling and
circulating electromagnetic waves in planar and axisymmetric two-
dimensional geometries, without recourse to complex arithmetic. The
singularities in the functional for axisymmetric geometries are eliminated
by a transformation of the field components. The transformed fields are
approximated by high-order interpolation polynomials over triangular
regions in the x-y and -z coordinate planes. A matrix expression
assembled from constant element matrices and geometric factors relating
to triangle shape, size, and position is obtained which is the discretized
equivalent of the original functional. The necessary element matrices
have been computed to sixth-order polynomial approximation. The
procedure for assembling a global problem is stated. Finally, a matrix
equation is generated by minimizing the discretized functional.

I. INTRODUCTION

N A recent paper [1], the author presented a general
three-component vector variational formulation of
electromagnetic field problems and derived functionals for
the wave equation in Cartesian and cylindrical coordinates.
In this paper, specialized functionals are introduced for
two commonly encountered wave types in loss-free aniso-
tropic media. Finite element matrices are derived and com-
puted for polynomial approximations of orders 1-6. The
formulation permits the analysis of traveling waves in
waveguides of arbitrary cross section and of circulating
waves in resonators of arbitrary longitudinal cross section,
including the study of waves in anisotropic media.

The only three-component vector variational formulation
of electromagnetic waves in isotropic media, in recent years,
is due to English and Young [2]. Their method is, however,
restricted to rectangular or circular geometries. With
regard to future work with anisotropic media, English and
Young predict that the coefficient matrix will be complex.
That this is not necessarily so, is evident from the present
work.

It is interesting to note that the formulation given here is
more closely related to the work of Stone {3}, who presented
a finite element formulation for the solution of acoustic
wave propagation, than to any of the published methods
for electromagnetic wave propagation. Stone’s formulation
is based on Silvester’s high-order finite element method for
potential calculations and homogeneous waveguide prob-
lems [4], [5], as is the method in this paper, although Stone
considers acoustic wave propagation. In connection with the
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dielectric-loaded waveguide problem, Stone comments that
“the variational principle must be modified to accommo-
date the required interface conditions,” apparently not
realizing that an analogous three-component formulation
of electromagnetic wave problems is also possible. Re-
markably, the five representative finite element matrices
used by Stone [3], [6] are precisely the same as the ones
computed here for traveling waves. Two of these five
matrices are given in Silvester’s work [4], a third one has
been computed independently by Csendes [7], [8] and by
Daly [9], [10], and the remaining two have been computed
by Stone [3], [6]- However, in each of these cases, the
matrices are given only up to fourth order, not six as in the
present work. Moreover, in this paper, entirely new finite
element matrices are derived for circulating wave problems.
It should be noted that as far as electromagnetic field
problems are concerned, the finite element method has been
applied previously only to the longitudinal electric and
magnetic field vector components [7]-[9] and only to
problems involving isotropic media. The finite element
formulation presented in this paper, therefore, both com-
plements and provides an alternative to existing methods.

I1I. MATHEMATICAL REPRESENTATION OF TRAVELING
AND CIRCULATING ELECTROMAGNETIC WAVES

At and above cutoff, a guided wave in the rectangular
coordinate system is characterized by the relative phases of
its field vector components and by a propagation constant
B. The unknowns are the functions H,, H,, and H, which
describe the magnetic field components in the x-y plane
and the frequency w at which the wave occurs. Similarly,
in the axisymmetric case, the relative phases and the
circulation constant m of the guided wave are known but
the frequency w and the functions describing the magnetic
field components in the r-z plane are unknown. The con-
stant m is related to the azimuthal periodicity of the wave
and therefore must be an integer (including zero).

In this paper, traveling waves of the form

H = [LH,,(x,y) +T,H,(x,7) + TH,x,y) exp (ijg)]

“exp (jot — jpz) (1)

are considered in media characterized by permeability and
permittivity tensors of the form

Gxx 9yx  +Jdzx
4= Dyx q,, +ja,|, d=torf. (2
—'jqzx —jqzy q:z
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These tensors are characteristic of transversely magnetized
ferromagnetic materials and of plasma [11], [12]. The
magnetization may be in any direction but it is restricted to
the x-y plane [13].1

In direct analogy to traveling waves in Cartesian co-
ordinates, circulating waves in the (#,0,z) system are
mathematically described by

H= [T,H,(r,z) + 1Hy(r,2) + T,H,(r,z) exp (-l_— j g)]

- exp (jot — jmb). (3)
The permeability and permittivity tensors are of the same
form as their Cartesian counterparts given by (2) but with
the subscripts x and y replaced by r and 6, respectively. At
the plane 8 = 0 the tensors are identical to the Cartesian
tensors [14].

III. SPECIALIZED FUNCTIONALS FOR TRAVELING AND
CIRCULATING WAVES
The waves described in the previous section must satisfy
the wave equation for source-free media
curl (p curl H) — o?fiH = 0 €]

where p = £71. It can be shown that the vector function
H=H whmh is a solution of (4) extremizes the functional

3
FE) = Y, f [[ tpudceut 7

+ 2 Re[PH si(curl H)f ((curl H),]
- wz[ﬂt,llHtlz + 2 Re(ﬂl'i-l,iH:ilHi)]} au (5)

where the subscript i is cyclic modulo 3 and the asterisk
denotes complex conjugate. In addition, H satisfies the
natural boundary conditions [1], [15] given by

fix (peurl H) =0 )

over the surface I which encloses the volume Q. 7 is the
outward unit normal vector to I". The explicit forms of the
functional and the natural boundary conditions in Cartesian
and cylindrical coordinates are given in [1] and [15]. The
specialized form of F(H) for traveling waves is given by

r =27 [ [pul5y £ 1)

oH, 2 (aH 6H)
+ H) + p..
p”(ax 4 ) s Ox dy
0H, 0H,
~ 2, i) (H: + pH,
py(ay 4 y)(ax A )
OH, OH.) (OH.
+ 2p,. k. £ + BH,
=P (ax ay)(ay d y)
. 2pzy(?—H-x - a—Hy) (aHz " ﬂHx)
oy Ox / \ox
F UL H, F o) dx dy. ™

! Other magnetization directions give rise to other material property
tensor forms and phase relationships between the field vector com-
ponents. It is beyond the scope of this paper to consider all possible
combinations.
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The constant 2n/f arises from the integration with respect
to z between the beginning and the end of a period in the
direction of travel.

For circulating waves the functional is given by

it =2 [[ o (V7 T 7 22+ | (B)
« () ]+ el (P 5+ )

mH, JH, oH,
+ 2pg, — (i mH, — r -——i’)
(\/; ) ] Po 0z 0z
+ 2pz,mH,(?—}é F _mHz)
' 0z ¥
+ 2pz9[ oH, (He + ra——}{‘-’) — mH, 6H,]
r or 0z

- wzr(”rrHrZ =+ MOGHBZ + l‘tzsz2 + Z:uOrHrHO
F U HH, F Q)| dr dz,
m=0,£1,£2,+3,---. (8)

The + and F terms arise because the H, vector component
may either lead or lag the other two components by a time
phase of #/2 radians. Notice that all quantities in (7) and
(8) are real. When m = 0, only those fields for which
H, = H, = 0 are of practical importance, and this case
has been treated elsewhere [16]-[18].

In order to avoid difficulties in trying to integrate the
singular terms in the functional (8), the vector function
H (r,z) will be transformed according to [1], [15]-[18]

H = Jrh@2). ©)

The transformation is justified because the field vector
components must vanish at » = 0. The functional (8) now
takes the following form:

F(h) = 2n ff {p,,(r % F mhz)2 + pgo[(r é—h’)2
0z oz

+(ra—hz) + rh, ——h—+ h]
0 4

r or
2
+ pzz[( (Zhﬂ + - ho) + mzhrzj,
+ 2pg,r -(?-}i (+mh —_— r%)
0z oz

+ 2pz,mh,(r %’ F
0z

mh,)

on
+ 2, h, +
p"[ (2 rar)

* (g hg + r ?—he) h ?—Il]
or 0z
— &?r¥(uph? 4 pgohe® + poh.® + 2pue.hh,
$ 2:u:rhrhz i 2.uz9h€hz } dr d27
m

= +1,+2,43,--. (10)
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TABLE 1
RESULTS OF THE DISCRETIZATION OF REPRESENTATIVE INTEGRALS FOR FUNCTIONAL (10)

-

Representative Discretized Expressions for the square matrices Expressions for the (m,k)-th entry
integrals for equivalents containing the geometrical information of the constant finite element matrices
functional (3.7){ in matrix about the triangular finite element [Yij], [UIj]’ [Eij]’ [Qijll and [31'21
form 3
h.h drdz (v, 15 RI(V, 1 | [RI=2]A] % % (Y. .1 Lm0 _ 1 o ad
1Pz 1 2 = LORPLTRE Yi3 "TTTAT) ) F155%n % d®
A
2 ¢ 3 3
rIr h h,drdz [v,17(e]Ev,] [P]=2|A|1Z1ri Z rj[Yij]
= j=1
] 3 3 3a da
t A _ (m,k) 1 m Tk
”rh1 37 drdz | IV, 170310V, 1 ] [)=5% izlti jZl(rj+2 TSR AIL L N D L m”ciwk 7T, *o a;j)ds
A
3h 3 3 da da
2 t A (m,k) m k
ffrhl 57 drdz (v 1 IN1LV, ] | [N]=£3 1£1ri jEl(zj+l-zj+2){[uij]+[gij]} Xy’ 7T5Tffci(ak 32; —an §E;>ds
A
3h. 3h 3 3 a da
21 2 t 1 (m,k)__1 k k
r 55 drdz [ [V, 17 [DI[V,] | [D]= r r Z (ry-r Y(r,-x, ) IQ 11 ”L ——-~—-)(——-—)ds
II 3z 3z 1 2 21A izl i jZl 3 221 L2 TL+2 L TR+l ijR ije 2 A 1 j 3§1+1 a;l+2 3{1+1 BLL+2
23h1 3h2 ¢ 1 3 3 3
[I' 3r 5r drdz | [V,17(ENIV, 10 [El=3yg 121’ jzlrj 22 (2gm2p49) (24720190 [Q 4]

,9h; dh, . E 3 3
f[r 5z 3¢ ¢rde| IV ITEEIV, 1 (2 l=gpgy E 1 Z %3 zzl{dl[qij£]+:llgijl]}

This last integral does not
appear in (3.7):; However, it
would appear in a functional
for circulating waves of the t.=(2 -z
type 1 B +1 3Bg+1 H_ (3=/-1) LT Tae2

dLS(r

Irg=rayy)-(2

2417 TR (Bgmzg ) (rgmr g )) (24 2y)

2+27%

aam au Bum k]

(m,k)__1 ” P e e Wi S
21A A AR IV I P T I

812

)

22 e T

NOTE: a) superscript t denotes transposition;
b) subscripts i, j and & are cyclic modulo 3;

¢) the range of m and k depends on the degree of the interpolation polynomials a;

d) [y j]’ [Uij]’ [Qijl] are symmetric and [Hij

N [giji] are antisymmetric matrices;

e) T, and 2, are triangle vertex coordinates and A 1s the triangle area.

IV. DISCRETIZATION

The objective is to discretize the functionals (7) and (10)
so that they can be written in matrix form. In the process,
the vector field is approximated by interpolation poly-
nomials over a general triangular region in such a way that
the integrations are performed only once and geometrical
information is added only when a specific problem is
solved [4]-[9], [15]-[19]. Thus, for a general triangle, the
vector function h(r,z) [or H(x,y)] is approximated by a
linear combination of a complete set of interpolation
polynomials {o;; i = 1,2,3,++,n} each of degree N [4]

F= ¥ Vaulals,  n= NV + DOV + 22 (D

The coefficients V; represent the values of h (or H) at the
interpolation nodes. The polynomials «; given in [4] have
been used extensively in recent years to generate high-order
triangular finite elements [5]-[8], [15]-[18]. {1, {;, and {3
are triangle area coordinates [4], [15], [19].

When the expanded integrands of (7) and (10) are
examined, one finds that many of the terms are similar in
form and that the various terms can be classified into
representative groups as shown in the first columns of
Tables I and II. The subscripts 1 and 2 in the expressions
signify that there may be two distinct field vector com-
ponents involved. Although the discretization of the
representative integrals involves the straightforward sub-
stitution of algebraic expressions, the procedure is lengthy
and tedious. The discretized equivalents of the functionals
can be constructed from the results given in Tables I and II.

The discretized equivalent of (7) is given by

F(V) = 2(x/B){[ V. (0..[D] + Bp,,[RD[ V]
—2[V,J(Bp.:[ ] + B0y Rl + po [ 2]
+ B, [N]Ve] + [V,]' (0L E] + 2Bp..[N]

[ RDIV,] F 20V, 1 (Bpyl T + p..[D]

- ﬁpyy[N]t - pzy[Z]t)[Vx] + Z[I/z]t(ﬂpyx[N]t
+ PulE] — Bpl ] — Pl ZDIV,]
+ V1 (Pl D] + Pyl E] = 2p, [ ZD[V,] |
— O* ([ Vi[RIV, + 20, [V, TRIV:]
+ [ V,ILRILV,] F 2u..[ V. T'[RI[V:]
F 2u, [ VITRIV;] + w2 LV, TTRILV D}

and the discretized equivalent of (10) has the form

F(V) = 21{[V,1(po[ D] + m’p.[R] — 2mp [ JD[V.]
+ 2[V. ) (£mpalJ] + m’p [RD[V.]
+ [Vo1'(posl E] + posl N ] + 2pe[ R]
+ m?p, [RDLV,] + 2[Vo]'(mp,[T]" — pe[DDLV;]
F [Val'Gpoo[R] + 30:6[N] + pos[ N1 + 2p.4[ E]
+ 2mp,[J1)Ve] + [Vel'(PnlD] + o[ E]
+3p,[N] + 3P [RD[Ve] — [V, ITPIV]
F 2, [V.IPIV + e LV TPV
+ 2ug[VoI'[PIV.] F 262l VoI [PILVC]
+ ool Vol TPILVaD}- (13)
Equations (12) and (13) can be constructed for a triangle of
arbitrary shape provided that the vertex coordinates are

known and the constant matrices [ Y;;], [U;;], [Ui;], [Q:)1]s
and [Q;;,] defined in the last column of Table I are given.

(12)
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TABLE 11
RESULTS OF THE DISCRETIZATION OF REPRESENTATIVE INTEGRALS FOR FUNCTIONAL (7)
Representative Discretized Expressions for the square matrices Expressions for the
integrals for equivalents containing the geometrical information constant finite
functional (3.4)] in matrix about the triangular finite element element matrices
form
t 3 3 for definition
H,H,dxdy (v, 1°[R1(V,] [R]=2|Alizl jzl[Yij] [¥i5] see Table I.
3H 3 3
2 £ dal - -
JJHl 57 dxdy V17110V, | =55 jZl(xj+z xj+1){[Uj]+[Hj]} [Uj]'izl[uij]
9H 3 3
2 t _1A _ =
”Hl T dxdy v, 15 NIV, | INT=52 jZl(yj+l ¥ y4) LU 140, 1) (gy1= 1 Way!
aHl oH " 1 3 3 3
” 37 3y 4xdy | [V17IR1IV,] | [O)=57%T LZﬁ"r’*mz”"ml)W [Q5L]=izl jél“‘m]
31-11 BHZ c 1 3 3 3
” Fn 3w 9xdy | [V 1TIEIIV,] | (E)=5T5T JLzl(y,b—y,wz)(y,t—yjmwgil [8’“:121 jzl[gi”]
8H1 3H2 ¢ 1 3
[[ 5% 52 amay | v2f20v,1 | 21=ghgy PRCALRENERE
= (Rgu1 ) (V¥ up) ¥ (X% 1) (gyq ¥y
Tom g1 ) (7202 U=y y) (Rpyp=%g4q)
NOTE: a) superscript t denotes transposition;
b) subsecripts i, j and £ are cyclic modulo 3;
c) [Yij]’ [Uj] and [Ql] are symmetric, [Hj] and [gll are antisymmetric matrices;

d) [Yij]’ [Uij]’ [Hij], [Qijll and [gijll are defined in Table I

e) Xy and y; are triangle vertex coordiaates and A is the triangle area.

There are 81 such matrices. However, only 14 are indepen-
dent, the remaining 67 being obtainable by row and column
. permutations [15].

V. THE ELEMENT MATRICES

The integrands in the last column of Table I are poly-
nomials in triangle area coordinates. Although straight-
forward, the integrations [4], [20] are difficult to perform,
except in the case N = 1 or 2, due to the very large number
of algebraic operations required. The author used the
IBM PL/I FORMAC compiler to manipulate the poly-
nomial expressions and to perform the integrations sym-
bolically rather than numerically [15]. Thus it was possible
to obtain the eight symmetric (Q1;1, Q121> O221> C2315
Uy, Uy, Yo, Yyy) [16] and the six antisymmetric (@4,
Q1125 0121, 0231, Uy, U, ) independent finite element
matrices up to and including order 6. The first- and second-
order matrices are given in Table III. The higher order
matrices (V = 3-6)are not reproduced here since theyrequire
considerable space. In practice, the numbers are handled
by two computer programs which store all 14 independent
matrices as integer quotients with common denominators
and generate FORTRAN block data statements contain-
ing the matrices. One of these programs also performs the
summations indicated in the last column of Table II. Thus
the element matrices required by (12) are also produced.?

2 For program listing, sce NAPS Document Nos. 03004 and 03005
from ASIS/NAPS, c/o Microfiche Publications, P.O. Box 3513, Grand
Central Station, New York, NY 10017; remitting $3.00 per microfiche
or $20.25 per photocopy of Document 03004 and $21.25 per photocopy
of Document 03005.

It should be noted here that the element matrices
[R]}/2|A] and [Q,] have originally been given for orders
1-4 by Silvester [4], the antisymmetric matrix [Q,] has
been given independently by Csendes [7], [8] and by
Daly [9], [10], and the matrices [U,] and [U, | have been
computed by Stone [3], [6].

The permutation operations which must be applied to
obtain the entire set of 81 element matrices appear in
Table IV. There are two basic kinds of permutation opera-
tions for element matrices [4], [21]. The first type, denoted
by R, corresponds to a mapping of the interpolation node
numbers by a rotation of the triangle counterclockwise until
the last node occupies the relative location of the first one
(Fig. 1). The node numbering sequence of the triangle in
the standard position corresponds to the row and column
sequence of the independent element matrices of Table III.
For a second-order triangle in the rotated position, the
sequence becomes 6,3,5,1,2,4. The second type of permu-
tation operation, denoted by F, corresponds to the mapping
of the interpolation node numbers by flipping the triangle
about an axis in its plane (Fig. 1). FORTRAN function
subroutines implementing the permutation operations R
and F and their combinations (R%, RF, and R*F) have
appeared elsehere [21].

VI. MINIMIZATION OF THE DISCRETIZED FUNCTIONALS

Given the independent element matrices, the matrix
forms (12) and (13) can be constructed for any polygonal
region that has been subdivided into triangles. In order to
assemble a global matrix form, it is required that contribu-
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TABLE III
THE FIRST- AND SECOND-ORDER INDEPENDENT ELEMENT MATRICES
Q Q Q Q Y Y U Y
111 121 221 231 8111 8112 8121 8231 11 21 11 21 Jéll J‘J’Zl
[ 1] 0 0 0=-1 0 0o 0 0 0 -1 o 0 -1 0 12 3 4 2 0 1 1 0 2 1
o 1 0 1 0 1 0 1 1 0 0 0 0«1 1 0 0 1 0 0 3 2 2 3 10 2 0 -1 0 0 -2 0 0
0-1 1 0-1 1 -1 1 0 -1 1 0 0 0 o 1 0 0o 0 0 ¢ 0 0 3 1 2 1 1 1 1 0 o 1 0 0 -1 0 0 -1 0 0
cd=12 <cd=24 cd=12 ccd=24 «cd=12 cd=12 cd=24 cd=24 <cd=360 ¢cd=360 cd=24 <cd=24 cd=24 cd=24
First-order matrices

Q Q Q Q Y U
111 121 221 231 11 21
0 0 ] 0 36 6
0 96 0 48 0 16 0 16 24 64 0 96
0=96 96 0 -4 8 48 0=~16 16 0-16 16 24 32 64 ¢ 32 32
¢0-12 12 7 (] 8 -8 15 0 12~-12 3% 0 4 -4 18 -5 0 -4 0 -6 24 [ )
0 0 0-8 1686 0—16 16-20 32 0—-16 16-~48 64 0 0 0=-16 32 4 16 16 0 0 -8 48 32 0 @0
0 12=12 1 =8 7| |0 8 =8 5=12 7|10 b - Q=16 T7{|0 -4 4 l-16 18§ -5 =4 o 0o o of|[|-1 -8 ¢ 0 0 ¢
cd=180 cd=360 cd=180 cd=360 cd=360 cd=360
8111 8112 8121 8231 Jell H21
=60 0 9-=12 0] 30 0 [} [} [} 0 0=24 ¢ 1 =4 0 0 -4 0 5 8 0 0 24 24 -5 4 =5 0 16 8 -6 =-8-1
6 0 0 24%-4 -8 0| |0 0=-96 0-24% 12|24 0 16=24~—16 0 L3 0 16=-24~32 0 ~24 0 0 0 16 -4 j-16 0 0 24 48 -8
0 =24 0 4-16 0{[0 96 0-12 24 ¢ 0~-16 0 -4 -16 0 0-~186 0 —-8-48 0f |[-2¥% L] ¢-4% 16 0 -8 0 0 0 32 ¢
-9 b ~-h4 0 0 0f 10 0 12 0 -h 1] |-1 24 4 0 0 0] |=-5 28 8 ] [ ] 5 0 4 0 [ ) 6 =2 & 0 0 0 0
12 8 16 0 0 010 2u=24 L' 0 -4 4 16 186 0 0 0] )-8 32 48 0 [ ) -4 —=16=16 O 0 0 8=l =32 0 [V
0 0 00 0 0lij0=12 0 =1 L3 Q 0 0 0 0 0 0 0 [ 1] 0 [) 5 4 [ [ ) 1 8 0 0 [ )
cd=180 cd=180 cd=360 cd=360 cd=360 cd=360

Y

11 21

2 4 3 v

12 48 0 36

12 24 us8 ¢ 12 12

-3 =6 =6 2 -1 0 =2 3

¢ 12 12=-2 8 -2 12 8 0 12

-3 -6 =6 1-2 2 0 =4 =2 0 =2 1
cd = common denominator cd=2520 cd=2520

Second-order matrices

tions from each triangle be properly identified and con-
nected together. Since the magnetic field H must be
continuous from triangle to triangle, the wave function
values at adjacent nodes are set equal. Theoretically, the
assembly process is performed with connection matrices [5],
[22]. However, in practice it is sufficient to employ a global
numbering sequence for the interpolation nodes. If the local
functionals all constructed using the global node identifiers,
the locations of elemental contributions in the global matrix
are easily determined. The form of the discretized functionals
is unchanged in the global interpretation. For example, the
column matrix [V,] of (13) in global form contains the
coeflicients from all the triangles in the sequence in which

the nodes are numbered. Similarly, in global form, the
matrices [D], [R], [/], [E], [N], ahd [P] are the sum of
contributions from the various triangles.

In the global interpretation, (12) and (13) are minimized
by differentiating with respect to [V,], [V,], [Vs], and [V, ],
[V,], [V.], respectively, and equating the results to zero.
For each functional, three matrix equations with three
unknown column matrices result; these can be combined
into a single matrix equation

[s1[¥] — &*[7][¥] = O.

For circulating waves the column matrix [ 7] and the sym-
metric coefficient matrices [ 7] and [S] are given by

(14

[[V.]
V] = |LVl] (15
[[Ve]
i ﬂrr[P] $:u'zr[P] uﬂr[P]
[T] = ?,le,.[P] .uzz[P] $”z(?[P:I (16)
:uﬂr[P] i:"‘Lze[})] #OGI:P]
[m?p..[R] + pe[D]  m’p,[R] £ mpy[J] mp,[J] — pe[ D] ]
— mp([7] + [J1)
[S] = mZPzr[R] + mpg[J] Pao{%;[R] + 3([N] + [N]) Fr.o3[R] + 3{(N]" + 3[N] 17
+ [E]} + m®p,[R] + [E]} F mp[J]
mp,[JT — palD]  Fr.o{3[R] + 3[N] + 3NT" p.3[R] + 3(N] + [N])
+ [ET} F mp,[J] + [E]} + pnlD] ]
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y TABLE IV
PERMUTATION OPERATIONS TO OBTAIN ALL 81 SYMMETRIC AND ANTISYMMETRIC ELEMENT MATRICES FROM THE 14
INDEPENDENT MATRICES

Matrices

2 =1 L =2 2 = 3
Qij Lgij L
Y0558y j =1 3 =2 j =3 3 =1 j =2 j =3 i=1 j =2 i=3
i =1 Qlll Q121 lel Qlll Q122 Q132 Qllg Q]Zg Ql!g
given given =FQ121 _RFQZZI _RFQIZI =RQ231 =R Q221 =R Q231 —B Q!.21
i = 2 Q211 QZZI Q231 Q212 Q222 Q232 QZI% Q223 Q233
= given given =RFQ =RQ =RQ =R*Q =R?*FqQ =R?FQ
121 121 111 121 231 221 121
{ = 3 Qail 32: Q331 Qaiz QSEZ Qai% Q_a-}lig ?%%% Qié%
_FQ12I - 231 _FQZZI —RQZSI —RQ121 B Q221 a Q121 a lel B Qlll
i = 1 8111 8]'.21 ngl 8112 81%2 8132 8113 8123 ’glsg
given given =—RF,Q231 given =-R ngal —Rg231 =—Fg111 =R 8231 =R QIZI
i =2 8211 QZZI 'QZSI g2%2 g222 8232 821; 'Q223 'sta
=g121 =_RF8111 'g_i—!ﬂ =R F’QZSI _Rglll _R8121 =R 8231 R'gnz " F'QZSI
i=3 8311 'QSZI 833% 'Q312 QSEZ —8332 gilg 8-3-23 'Qiag
=_RF’Q231 =%231 =R 8112 =38231 _R'QIZI =-R F’glll =R 8121 - F’Q231 =R g111
i =1 Yll YIZ Y13 Ull UIZ U132 'gll le H].32
given =Y2l =Y31 given —RFU21 = U21 given =RF,H2l = HZI
i =2 21 YZZ Y23 U21 UZZ UZ% J821 H22 HZ%
given =RY11 =Y32 given =RU11 =R FU21 given =R¥ll =R ngl
i = 3 Y3l Y32 YSQZ Uax U32 U332 Hal HSZ H33‘2
=Fy =RY =R°Y =Fu =RU R*U =Fy =Ry =R*y
21 21 11 21 21 11 21 21 11
Note: R denotes the rotation permutation operator, F denotes the flip permutation operator, and R?* = RR.
For traveling waves, [V], [T], and [S] become
[[V.]
[vl=|LV] (18)
[V:]
[ 1alR] m[R] Fu.{R]
[7] = | moR]  my[R] Fu[R] (19)
| Fua[R] Fu,[R]  pao[R]
[.szyy[R] + pzz[D] _ﬁzpyx[R] - ﬁpzx[J]t $ﬂpyx["] + pzx[D] 1
+ B, (7] + [T1) — P Z] — Bp,[N] % Bp,[N] £ p.,[Z]
(5] = | ~FPnR] = BolJ]  BpIN] + [N FhpulN] £ plZ] o
- pzz[Z]t - ﬂpzy[N]' + pzz[E.] + ﬁ xx[R] i ﬁpxx[',] i pzy[E]
$prx[',]t ¢ pzx[D] iﬁpyx[N]t i pzx[Z] —pyx([Z] + [Z]t)
|+ BonIN] £ p[Z] £ BplJT F 2, [E]  + py[E] + pu[D]
For an assembly of triangles with a total of n, interpolation . . o
nodes, the size of the coefficient matrices [S] and [T7] is terized by the relative permeability tenso.r
3n, x 3n,. The eigenvalues of (14) are w? and the eigen- 3.0 0.0 +J.0-8
vectors are the nodal values of the vector fields. For every A = .0-0 _1-0 +j0.0 @D
value of the propagation constant 8, or of the circulation —jo.8 —j0.0 3.0

constant m, an eigenvalue—eigenvector spectrum set can be
obtained. To obtain the magnetic field for circulating waves,
the solutions of (14) must be inversely transformed in
accordance with (9).

VII. ACCURACY OF THE METHOD

Consider a rectangular waveguide with a 2:1 width-to-
height ratio completely filled with a ferrite material charac-

and a relative permittivity of 2. Here fi, is independent of
frequency, although this assumption is not valid for ferrites
in general [11], [12]. An analytical solution can be obtained
for the dominant waveguide mode and also for some of the
higher order modes [15]. A finite element solution was
obtained with two sixth-order triangles. The comparison of
the finite element solution with the analytical solution ap-
pears in Tables V and VI.
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Fig. 1. Mapping of the interpolation nodes of a second-order
triangle by (a) counterclockwise rotation, and (b) flip over about an
axis in its plane.
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TABLE V
THE WAVENUMBERS X, k2, AND k3 AND THE PERCENT ERRORS FOR
THE FERRITE-FILLED RECTANGULAR WAVEGUIDE SOLVED BY THE
Finire ELEMENT METHOD USING TWO SIXTH-ORDER TRIANGLES

[$] K % error* k % error* k % error*
1 2 3
-1 |o0.788758 1.74x107%| 1.39655 1.64x1073] 2.06006 0.956
0|0.665367 2.56x207%| 1.33076 1.70x1073[ 2.01606 0.999
+1 | 0.788758 1.74x107%| 1.39655 1.64x2073] 2.06006 0.956
+2 [ 1.07723  2.42x107% | 1.57754 1.35x1073] 2.18662 0.838
+3 ] 1.436441  3.89x107% | 1.84005 1.32x1073 2.38326 0.717
+4 | 1.82031  0.06x107% | 2.15448 1.17x1077] 2.62255 0.164
+512.21999  0.59x107% [ 2.50133 1.15x1073| 2.92135 0.378
*analytical solution: k:-ﬁ[62+(ng)2] s (n=1,2,3,...), kn=wn Ho€o

TABLE V1
VALUES OF H; AT THE INTERPOLATION NODES AT y = 0 AND PERCENT ERRORS FOR THE FERRITE-FILLED RECTANGULAR
WAVEGUIDE SOLVED BY THE FINITE ELEMENT METHOD USING TwoO SiXTH-ORDER TRIANGLES

1

- - =41 -t -
Hz(x=—1) Hz(x=—§) Hz(x-—g) Hz(x— 0) Hz(x-+3) Hz(x +3) Hz(x +1)
8 P % z p % z %
error#* error¥® error* error¥ error® error¥® error¥
-4,3323 -4.1199 -2.8028 -0.73543 +1.5289 +3.3845 +4.,3323
-1 .000 -.007 .010 .006 .020 -.010 .000
-5.1357 -4.4480 -2.5674 +0.00006 +2.5676 +4.4481 +5.1358
0 .002 -.006 .019 -———- .012 -.008 .000
-4.3323 -3.3845 -1.5289 +0.73546 +2.8028 +4.1199 +4,3323
+1 .000 -.010 .020 .002 .010 -.007 .000
-3.1721 -2.2089 -0.65313 +1.0771 +2.5187 +3.2859 +3,1721
+
2 .000 -.013 .029 -.007 003 -.008 .000
-2.3821 -1.4568 -0.14028 +1.2133 +2.2418 +2.6700 +2.3821
+
3 .000 -.030 .081 -.009 .001 -.017 000
4 -1.8767 -0.98929 +0.16511 +1.2757 +2,0424 +2,2640 +1,8775
+
.043 -.080 .162 -.060 .023 -.025 .000
s -1.5391 -0.67965 +0.36195 +1.3064 +1.9012 +1.9862 +1.5389
+
-.013 -.008 -.040 -.011 -.026 -.017 .000

analytical solution: HZ=A[ain(gx)+(l.68/3n)cos(gx)] where A has been chosen in such a way that the

percent error in the values Hz(x=+1) computed by the finite element method is zero.

VII. CONCLUSIONS

The three-component vector variational formulation
coupled with the high-order polynomial triangular finite
element method presented in this paper has the following
significant features and advantages.

1) The formulation is based on specific wave forms such
as traveling waves which are linearly polarized in the trans-
verse plane and circulating waves which are circularly
polarized in the r-z plane. Depending on the choice of
material property tensor forms, other types of waves (e.g.,
circulating waves which are linearly polarized in the r-z
plane) could be treated in a similar way.

2) The formulation is valid for electromagnetic waves
both in isotropic and anisotropic lossless media with the
resulting coefficient matrices being real in both cases.

3) For inhomogeneous media, no singularities will
appear at the air line and dielectric line on the dispersion
diagram.

4) The finite elements are assembled from precalculated
constant matrices. Thus the matrix assembly does not

involve integration and consequently the assembly process
is fast and relatively easy to carry out.

5) Waveguides of arbitrary cross section or cavities of
arbitrary longitudinal cross section can be handled, and
provided that the finite element model has sufficient degrees
of freedom, the results are very accurate.

The following are the limitations and drawbacks of the
method.

1) The material property tensors are assumed to be
independent of the frequency and they must not have spatial
variation within the triangles.

2) It is difficult to model curved boundaries with triangles
which have straight edges.

3) Since three vector components must be considered for
every interpolation node, the size of the global matrix
equation is larger than in two-component vector formula-
tions. Explicit enforcement of boundary conditions such as
fi-B=0 or i-D = 0 is advantageous for reducing the
matrix size and for eliminating nonphysical solutions from
the spectrum as described in [1].
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Although the derivations in this paper are given in terms
of the magnetic field, the results are also valid for the electric
field provided that dual quantities are substituted and the
appropriate boundary conditions are added.
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High-Azimuthal-Index Resonances in Ferrite
MIC Disk Resonators

PIETRO bpE SANTIS, MEMBER, IEEE

Abstract—This paper presents a study of the nonreciprocal high-
azimuthal-index zero-radial-order modes which may resonate in ferrite
MIC disk resonators magnetized perpendicularly to the ground plane.
Both ferrite volume (FV) and edge-gufded-wave (EGW) modes are
investigated by using a suitable equivalent model. It is found that when
the ferrite is saturated, a simple empirical parameter is sufficient to
characterize the fringing-field effects at the disk’s edge. )

I. INTRODUCTION

ECENTLY [1], [2], ferrite MIC disk resonators of
R large diameter have received some attention because
they are suitable to study the propagation characteristics of
the “edge-guided” waves (EGW) [3] in very much the
same way as MIC ring resonators were used to study quasi-
TEM propagation in isotropic MIC’s. '
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Among the various modes which may resonate in such
disk resonators, those appropriate to studying EGW
characteristics are the TM, , o modes with n = 4,5,6, - -.
These modes are TM with respect to the Z-axis, which is
taken perpendicular to the ground plane. They present no
nodes in the radial direction and are Z-independent.

An approximate analysis of a ferrite disk resonator mag-
netized perpendicularly to the ground plane was developed
by the present author [4] using perfect magnetic-wall
boundary conditions at the disk’s edge. Subsequent experi-
ments carried out by Brundle [2] measured EGW phase
velocities 8 percent off the theoretical predictions.

The disagreement between theory and experiment was
probably due to the use of unaccurate boundary conditions;
i.e., to the neglect of fringing-field effects.

It is the purpose of this paper to study the fringing-field
effects in ferrite MIC disk resonators and, more specifically,
to evaluate how they affect the TM, , , resonances. The



